Deoxyartemisinin Derivatives from Photooxygenation of Anhydrodeoxydihydroartemisinin and Their Cytotoxic Evaluation

Ahmed M. Galal, ${ }^{*, \dagger}$ Samir A. Ross, ${ }^{\dagger, \neq \mp}$ Mahmoud A. EISohly, ${ }^{\dagger, \S}$ Hala N. EISohly, ${ }^{\dagger}$ Farouk S. EI-Feraly, ${ }^{\perp}$ Mohamed S. Ahmed, ${ }^{\perp}$ and Andrew T. McPhail ${ }^{\nabla}$
National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, Department of Pharmacognosy, Department of Pharmaceutics, School of Pharmacy, University of Mississippi, University, Mississippi 38677, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia, and Department of Chemistry, Paul M. Gross Chemical Laboratory, Duke University, Durham, North Carolina 27708-0346

Received August 13, 2001

Photooxygenation of anhydrodeoxydihydroartemisinin (4) followed by chromatographic separation of the reaction mixture yielded the new compounds α - (5) and β-hydroperoxydeoxyartemisitene (8) and the formate ester $\mathbf{7}$, together with two previously reported compounds, $\mathbf{6}$ and $\mathbf{9}$. Reduction of $\mathbf{5}$ using polymerbound triphenylphosphine afforded the new compound dihydrodeoxyartemisitene (10). Treatment of $\mathbf{1 0}$ with a catalytic amount of $\mathrm{BF}_{3}-\mathrm{OEt}_{2}$ yielded the C_{2}-symmetrical dimer bis(dihydrodeoxyartemisitene) ether (11) and two new compounds, dihydrodeoxyartemisitene methyl ether (12) and the dimer 13, as minor products. Dehydroacetoxylation of $\mathbf{5}$ using acetic anhydride in pyridine afforded deoxyartemisitene (14). The identities of the new compounds ($\mathbf{5}, \mathbf{7}, \mathbf{8}, \mathbf{1 0}-14$) were deduced from their spectral data and by chemical derivatization. Thestereochemistry of dimer $\mathbf{1 1}$ was defined on the basis of X-ray crystall ographic analysis. All compounds were evaluated in vitro in the National Cancer Institute drug-screening program consisting of 60 human cancer cell lines derived from nine different tissues. Of the compounds tested, deoxyartemisitene (14) demonstrated significant cytotoxicity against a number of human cancer cell lines.

Previous reports on artemisinin derivatives with a peroxy functionality, including those with a $\Delta^{11(13)}$ exomethylene moiety, documented significant cytotoxicity for several cancer cell lines. ${ }^{1}$ Reports on cytotoxicity of the deoxyartemisinin derivatives are scarce; however, some have shown antitumor activity. ${ }^{2,3}$ On the other hand, there are no reports on the cytotoxicity of deoxyartemisitene derivatives. In this study, several deoxyartemisitene compounds were prepared, and their cytotoxicity was evaluated in an in vitro cytotoxicity screen provided by the National Cancer Institute, Bethesda, MD.

Results and Discussion

The key compound anhydrodeoxydihydroartemisinin (4) was prepared from artemisinin (1) by reduction with sodium borohydride to give di hydroartemisinin (2) followed by hydrogenation to afford deoxydihydroartemisinin (3), ${ }^{4}$ which was then converted to 4^{5} with $\mathrm{BF}_{3}-\mathrm{OEt}_{2}$ (Scheme 1). Compound 4 was then subjected to photochemical oxygenation using meso-tetraphenyl porphine as a photosensitizer. ${ }^{6}$ The major product of photooxygenation, the new compound 5, was obtained in 55% yield by crystallization from hexanes-EtOAc. The mother liquor from crystallization of $\mathbf{5}$ was chromatographed on a Si gel column to yield the new compound 7 in addition to the known compounds $\mathbf{6}$ and $\mathbf{9}$. Reduction of $\mathbf{5}$ using polymerbound triphenylphosphine yielded compound 10. Compound 10 was transformed by $\mathrm{BF}_{3}-\mathrm{OEt}_{2}$ into the new dimeric compound 11, as well as two further new compounds, 12 and 13, that were formed as side products. Dehydroacetoxylation of $\mathbf{5}$ using $\mathrm{Ac}_{2} \mathrm{O}$ in pyridine yielded

[^0]Scheme 1. Synthesis of Deoxyartemisinin Derivatives ${ }^{\text {a }}$

a (a) $\mathrm{MeOH}, \mathrm{NaBH}_{4}, \mathrm{O}-5^{\circ} \mathrm{C}, 3 \mathrm{~h}$; (b) $\mathrm{Pd} / \mathrm{CaCO}_{3}, \mathrm{H}_{2}$, room temperature, atmospheric pressure; (c) $\mathrm{BF}_{3}-\mathrm{OEt}_{2}$, hexane-diethyl ether (1:1), room temperature; (d) meso-tetraphenylporphine, O_{2}, light, $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Me}_{2} \mathrm{CO}, 2.5$ h; (e) Polymer-bound triphenylphosphine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (f) $\mathrm{BF}_{3}-\mathrm{OEt}_{2}$, diethyl ether; (g) $\mathrm{Ac}_{2} \mathrm{O}$, pyr.
the new compound deoxyartemisitene (14) (87\% yield) (Scheme 1).

Compound 5 displayed a deprotonated molecular ion peak in the HRESIMS at m/z 281.1429, supporting a molecular formula of $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{5}$. The presence of an exomethylene group was indicated by signals in the ${ }^{13} \mathrm{C}$ NMR spectrum at $\delta 142.0(\mathrm{C}-11)$ and $114.5(\mathrm{C}-13)$ and in the ${ }^{1} \mathrm{H}$ NMR spectrum by two ol efinic protons resonating at $\delta 5.33$ (s) and 5.11 (s). The presence of two methyl groups, C-14 and $\mathrm{C}-15$, was evident from signals in the ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR spectra at $\delta 18.5$ and 0.91 (d) and at $\delta 23.6$ and 1.50 (s), respectively. The ${ }^{1} \mathrm{H}$ NMR spectrum also showed three characteristic proton signals at $\delta 5.52$ (s), 2.59 (dd), and 5.82 (s) assigned to $\mathrm{H}-5, \mathrm{H}-7$, and $\mathrm{H}-12$, respectively. The presence of an OOH group was evident from the appearance of an IR peak at $v_{\text {max }} 3362 \mathrm{~cm}^{-1}$ and the observation of a ${ }^{1} \mathrm{H}$ NMR peak at $\delta 9.54$ (1H, brs, exchangeable). The relative stereochemistry of the hydroperoxide group at C-12 in 5 was determined as α on the basis of NOESY data,

	\mathbf{X}	$\mathbf{R}_{\mathbf{1}}$	$\mathbf{R}_{\mathbf{2}}$
	$\mathrm{O}-\mathrm{O}$	$=\mathrm{O}$	$\beta-\mathrm{CH}_{3}$
$\mathbf{1}$	O	OH	$\beta-\mathrm{CH}_{3}$
$\mathbf{2}$	O	OH	$\beta-\mathrm{CH}_{3}$
$\mathbf{3}$	O	OH	$=\mathrm{CH}_{2}$
$\mathbf{8}$	O	$\beta-\mathrm{OOH}$	$=\mathrm{CH}_{2}$
$\mathbf{1 2}$	O	$\beta-\mathrm{Om}$	$=\mathrm{O}$
$\mathbf{1 4}$	O	$=\mathrm{O}$	$=\mathrm{CH}_{2}$
$\mathbf{1 6}$	$\mathrm{O}-\mathrm{O}$	$=\mathrm{O}$	$=\mathrm{CH}_{2}$

which showed correlations of proton $\mathrm{H}-12$ with both the β-oriented $\mathrm{Me}-15$ and proton $\mathrm{H}-5$. The above data were consistent with structure 5.

Compound 7 had a molecular formula of $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{5}$ based on HRESIMS. Its ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR spectral data (Table 1 and Experimental Section) suggested that it is the deoxy analogue of the known compound $15 . .^{7}$ The ${ }^{13} \mathrm{C}$ NMR spectrum of 7 showed the presence of a ketone carbonyl functionality resonating at δ 207.6, a formyl carbonyl at δ 159.7, and three methyl groups at $\delta 18.7,24.2$, and 32.0. The ${ }^{1} \mathrm{H}$ NMR spectrum supported the presence of a formyl residue with a proton at $\delta 7.87$ and three methyl signals at $\delta 0.91$ (d), 1.56 (s), and 2.36 (s), with the latter being attached to a carbonyl group of a ketone. In the IR
spectrum, absorption bands corresponding to the formyl ester and keto group were observed at $v_{\max } 1745$ and 1710 cm^{-1}, respectively. The foregoing evidence was used to confirm structure 7, which was further verified by conversion to compound $\mathbf{9}^{8}$ and by preparation from compound $15 .{ }^{9}$

Examination of the ${ }^{1} \mathrm{H}$ (Experimental Section) and ${ }^{13} \mathrm{C}$ NMR (Table1) data as well as the mass spectrum indicated that $\mathbf{8}$ is an epimer of $\mathbf{5}$ with the OOH group attached to C-12 being β-oriented, which was also supported by the change of optical rotation $\left([\alpha]_{D}-102.3^{\circ}\right)$.
Analysis of the physical and spectral data of compound 6 revealed that it has been reported previously.5,10 Compound 9 was also found to be of known chemical structure on the basis of comparison of its spectral data with literature values. ${ }^{8}$
Reduction of 5 using polymer-bound triphenylphosphine ${ }^{9}$ yielded 10. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data indicated that it was the expected deoxy analogue of dihydroartemisitene. ${ }^{9}$ The HRESIMS of $\mathbf{1 0}$ displayed a molecular ion peak at $\mathrm{m} / \mathrm{z} 265.1482[\mathrm{M}-\mathrm{H}]^{-}$corresponding to a molecular formula of $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{4}$. The IR spectrum showed a hydroxyl absorption band at $v_{\max } 3340 \mathrm{~cm}^{-1}$. The relative stereochemistry of the hydroxyl group at C-12 in $\mathbf{1 0}$ was determined as α on the basis of the mechanism of reduction of 5 to $\mathbf{1 0}$, which proceeds with retention of stereochemistry, and this assignment was supported by NOESY NMR data, which showed correlations of $\mathrm{H}-12$ with the β-oriented $\mathrm{Me}-15$. Although the $\mathrm{C}-12 \alpha$ isomer predominated, there was ample evidence in the ${ }^{1} \mathrm{H}$ NMR spectrum for the presence of the $\mathrm{C}-12 \beta$ diastereomer, albeit in a low concentration (approximately in the ratio of 1:4). Thus, the aformentioned data were in agreement with the assignment of $\mathbf{1 0}$ as dihydrodeoxyartemisitene.

The C_{2}-symmetrical dimer 11, obtained via $\mathrm{BF}_{3}-\mathrm{OEt}_{2^{-}}$ catalyzed dimerization of 10, showed a molecular ion peak at $\mathrm{m} / \mathrm{z} 537.2815[\mathrm{M}+\mathrm{Na}]^{+}$, corresponding to the mol ecular formula $\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{O}_{7}$. The ${ }^{1} \mathrm{H}$ (Experimental Section) and ${ }^{13} \mathrm{C}$ NMR spectral data (Table 1) of $\mathbf{1 1}$ were consistent with the structure shown. X-ray crystallographic analysis not only confirmed this assignment but also established the relative stereochemistry of the acetal linkage at C-12 as β. The asymmetric crystal unit consists of two molecules of 11 with overall very similar conformations. A view of the solid-state conformation of one of these molecules is presented in Figure 1. Corresponding bond distances in the two independent molecules of $\mathbf{1 1}$ as well as those in the individual molecules agree well and all lie close to expected

Table 1. ${ }^{13} \mathrm{C}$ NMR Chemical Shift Assignmentsa for Compounds 4, 5, 7, 8, 10-12, and 14

carbon	4	5	7	8	10	$11^{\text {b }}$	12	14
1	45.7, d	44.2, d	47.1, d	44.8, d	44.3, d	44.5, d	44.5, d	44.4, d
2	21.6, t	21.9, t	22.2, t	21.8, t	21.9, t	22.0, t	22.0, t	22.0, t
3	34.4, t	34.3, t	33.8, t	34.8, t	34.4, t	34.5, t	34.5, t	33.9, t
4	107.7, s	107.8, s	109.6, s	108.9, s	107.4, s	107.5, s	107.3, s	109.8, s
5	95.6, d	96.8, d	92.9, d	95.3, d	97.2, d	97.2, d	96.0, d	99.4, d
6	83.3, s	81.6, s	87.1, s	80.9, s	81.3, s	81.6, s	81.4, s	82.3, s
7	41.1, d	45.1, d	54.7, d	43.5, d	44.4, d	44.4, d	44.6, d	44.7, d
8	27.6, t	32.6, t	24.2, t	32.1, t	33.4, t	33.3, t	33.1, t	30.9, t
9	34.2, t	34.0, t	33.7, t	33.9, t	34.1, t	34.2, t	34.1, t	33.6, t
10	35.3, d	35.3, d	35.3, d	35.2, d	35.2, d	35.2, d	35.3, d	35.5, d
11	112.6, s	142.0, s	207.6, s	140.5, s	148.5, s	145.0, s	145.5, s	135.5, s
12	133.9, d	99.0, d	159.7, s	100.7, d	89.4, d	92.8, d	97.1, d	162.9, s
13	16.6, q	114.5, t	32.0, t	119.3, t	112.6, t	112.6, t	112.7, t	129.1, t
14	18.8, q	18.5, q	18.7, q	18.5, q	18.5, q	18.6, q	18.6, q	18.5, q
15 OMe	24.2, q	23.6, q	24.2, q	23.2, q	23.6, q	23.1, q	$\begin{aligned} & 23.7, \mathrm{q} \\ & 56.0 \end{aligned}$	24.0, q

[^1]

Figure 1. ORTEP diagram (40% probability ellipsoids) showing the crystallographic atom-numbering scheme and solid-state conformation of one of the molecules of $\mathbf{1 1}$ in the asymmetric crystal unit; small filled circles represent hydrogen atoms.
values. ${ }^{11}$ The conformations of like rings are also similar and did not differ significantly from those in a C_{2}-symmetrical dimer prepared earlier by treating deoxydihydroartemisinin with p-toluenesulfonic acid in dry toluene. ${ }^{5,10}$

Fractionation of the mother liquor of $\mathbf{1 1}$ using column chromatography yielded $\mathbf{1 2}$ and $\mathbf{1 3}$ as col orless solids. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra indicated that 12 is the $\mathrm{C}-12$ O-methyl derivative of $\mathbf{1 0}$ with a methoxy group attached to C-12. The methoxy signal appeared at $\delta 56.0$ in the ${ }^{13} \mathrm{C}$ NMR spectrum and at $\delta 3.52$ in the ${ }^{1} \mathrm{H}$ NMR spectrum. The HRESIMS supported the assigned structure 12 by displaying a sodiated molecular ion at $\mathrm{m} / \mathrm{z} 303.1581$, corresponding to the molecular formula $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{4}$. The stereochemistry of the methoxy group at C-12 was determined as β on the basis of its NOESY correlation with the β-oriented $\mathrm{H}-5$. Structure $\mathbf{1 2}$ was further confirmed by its preparation from $\mathbf{1 0}$ by acetalization with methanol in the presence of a catalytic amount of $\mathrm{BF}_{3}-\mathrm{OEt}_{2}$. This compound is apparently an artifact formed during crystallization of $\mathbf{1 1}$ using a mixture of hexane-EtOAc-MeOH. It is worth noting that compound $\mathbf{1 2}$ was formed with the C-12 methoxy group exclusively in the β-orientation.

The HRESIMS of compound $\mathbf{1 3}$ showed a molecular ion at $\mathrm{m} / \mathrm{z} 537.2822\left[\mathrm{M}+\mathrm{Na}^{+}\right.$, indicating a molecular formula of $\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{O}_{7}$. The ${ }^{13} \mathrm{C}$ NMR spectrum of 13 (Table 1) exhibited 30 carbon signals with dose similarity to 4 and 5 (Experimental Section), which in combination with the HRESIMS data indicated that 13 is an unsymmetrical dimer. Inspection of the ${ }^{13} \mathrm{C}$ NMR spectrum also revealed

HMBC
NOESY
Figure 2. Important HMBC and NOESY correlations of $\mathbf{1 3}$.
the existence of an exomethylene functionality with two carbon signals resonating at $\delta 112.6$ ($\mathrm{C}-13^{\prime}$) and 146.1 (C11'), an olefinic moeity with a methine carbon signal at δ 140.6 (C-12), and a quaternary carbon signal at $\delta 112.4$ (C-11), in addition to the characteristic allylic oxymethylene signal at $\delta 68.5$. The ${ }^{1} \mathrm{H}$ NMR data supported the presence of three olefinic protons, two bel onging to the exomethylene functionality at $\delta 5.00$ (H-13'b) and 5.27 (H-13'a) and the third proton bel onging to the methine carbon at $\delta 6.39(\mathrm{H}-$ 12). The two protons of the methylene group at C-13 appeared as doublets at $\delta 4.25(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.2 \mathrm{~Hz})$ and $4.20(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.2 \mathrm{~Hz}$). Confirmation was made by analysis of the HMQC and HMBC spectra of $\mathbf{1 3}$ (Figure 2). The relative stereochemistry at C-12' was defined on the basis of a NOESY experiment in which H-12' displayed correlations with the β-oriented $\mathrm{Me}-15^{\prime}$ and $\mathrm{H}-5^{\prime}$, and accordingly, the acetal linkage was assigned with an α-orientation.

Dehydroacetoxylation of 5 by treatment with acetic anhydride in pyridine 7 furnished 14. The ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 4}$ exhibited a characteristic lactone carbonyl signal at $\delta 162.9$. The IR absorption band at $v_{\max } 1740 \mathrm{~cm}^{-1}$ confirmed the presence of an α, β-unsaturated lactone moiety. The HRESIMS showed a molecular ion peak at m / z 263.1260 [M - H] corresponding to a molecular formula of $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4}$. Thus, spectral data interpretation, in addition to the comparison of the spectral data of the peroxy anal ogue artemisitene (16), ${ }^{12}$ supported the assignment of compound 14 as deoxyartemisitene.

All compounds were tested in vitro at National Cancer Institute using their panel of 60 human tumor cell lines. ${ }^{13}$ Deoxyartemisitene (14) demonstrated considerable cytotoxicity against a number of human cancer cell lines. Its cytotoxicity was comparable to that of artemisitene (16). ${ }^{14}$ Deoxyartemisitene (14) displayed some selectivity toward leukemia. In the leukemia subpanel, it was active against the HL-60 (TB), CCFR-CEM, and K-562 cell lines, with $E D_{50}$ values of $0.69,0.92$, and $0.94 \mu \mathrm{~g} / \mathrm{mL}$, respectively, as well as the RPMT-8226 and SR cell lines, with ED 50 values of 1.68 and $1.89 \mu \mathrm{~g} / \mathrm{mL}$, respectively. It also showed cytotoxicity against the ovarian cancer cell line IGROVI and the non-small cell lung cancer cell line (HOP-92) with $E D_{50}$ values of 0.89 and $0.92 \mu \mathrm{~g} / \mathrm{mL}$, respectively. In addition, cytotoxic activity was observed against the MCF 7 and B7-549 breast cancer cell lines with ED 50 $_{50}$ values of 1.46 and $1.97 \mu \mathrm{~g} / \mathrm{mL}$, respectively.

Experimental Section

General Experimental Procedures. Melting points were recorded on an Electrothermal 9100 instrument. Optical
rotations were recorded at ambient temperature using a J ASCO DIP 370 digital polarimeter. IR spectra were obtained using a ATI Mattson Genesis Series FTIR spectrometer. The ${ }^{1} \mathrm{H}$ NMR spectra were recorded in CDCl_{3} on a Varian VXR 300 instrument at $300 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right)$ and $75 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$ or a Bruker DRX 400 spectrometer operating at 400 MHz for ${ }^{1} \mathrm{H}$ and 100 $\mathrm{MHz}{ }^{13} \mathrm{C}$, using the solvent peak as reference. 2D NMR spectra were measured with standard pulse programs and acquisition parameters. Mass spectra were recorded on a Finnigan MAT 300 mass spectrometer using methane as ionization gas. HRESIMS were obtained on a Bruker BioAPEX 30es ion cyclotron high-resolution HPLC-FT spectrometer by direct injection into an electrospray interface. TLC was performed on precoated Si gel G plates (E. Merck) using mixtures of EtOAc and hexane as solvent and visualized by spraying with p -anisal dehyde spray reagent. ${ }^{15}$ Artemisinin (1) was isolated from Artemisia annua L. (Asteraceae) plants grown in Saudi Arabia, following a literature procedure. ${ }^{16}$

Photooxygenation of 4. Compound 4 (1.9 g) was introduced into dudly tubes and dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-acetone (1:1, 25 mL). The photosensitization dye meso-tetraphenyl porphine was added (5 mg) to each tube, and the sol ution acquired a wine-red col or. The reaction mixture was then subjected to 650 W incandescent light while a stream of oxygen was bubbled gently through it, and its temperature was maintained at 25 ${ }^{\circ} \mathrm{C}$. After 2.5 h , the solvent was distilled off from the reaction mixture to leave a red-colored solid. The colored solid was washed with ether $(3 \times 100 \mathrm{~mL})$ to remove the lipophilic dye. The resulting col orless solid showing a single spot on TLC with $R_{f} 0.43$ (toluene-EtOAc, 8:2) was crystallized from hexaneEtOAc to yield colorless prisms of 5 ($1.04 \mathrm{~g}, 55 \%$): mp 193$194^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}+27.0^{\circ}\left(\mathrm{c} 0.026, \mathrm{CHCl}_{3}\right)$; IR (KBr) $v_{\max } 3362 \mathrm{~cm}^{-1}$ (OOH); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 9.54(1 \mathrm{H}, \mathrm{brs}, \mathrm{OOH}), 5.82$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-12$), 5.52 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5$), 5.33 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-13 \mathrm{a}$), 5.11 (1 H , $\mathrm{s}, \mathrm{H}-13 \mathrm{~b}), 2.59$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.8,4.5 \mathrm{~Hz}, \mathrm{H}-7$), $1.88(1 \mathrm{H}, \mathrm{m}$, H-2a), 1.74-1.66 (3H, m, H-3a, H-8a, H-9a), 1.58 (2H, m, H-3b and H-8b), 1.50 (3H, s, Me-15), 1.30-1.11 (4H, m, H-1, H-2b, H-9b, H-10), $0.91(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.5 \mathrm{~Hz}, \mathrm{Me}-14)$; ${ }^{13} \mathrm{C}$ NMR (Table 1); HRESIMS m/z $281.1429[\mathrm{M}-\mathrm{H}]^{-}$(calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{5}$, 281.1394).

The mother liquor left after crystallization of $\mathbf{5}$ was concentrated under reduced pressure to give an orange oily residue $(0.850 \mathrm{~g})$. This residue was dissolved in a small volume of hexane-ether ($1: 1$) and chromatographed on a Si gel column (85 g). Elution with 10% ether in hexane yielded 6 (54 mg , col orless crystals). Compound $\mathbf{6}$ had physical and spectral data that were indistinguishable from the reported values.5,10 Further elution with 10\% ether in hexane provided 7 (54.7 $\mathrm{mg}, \mathrm{R}_{\mathrm{f}} 0.53$, hexane-EtOAc, 7:3): prisms (hexane-EtOAc); $\mathrm{mp} 193-194^{\circ} \mathrm{C}[\alpha]_{\mathrm{D}}-170.8^{\circ}$ (c $0.11, \mathrm{CHCl}_{3}$); IR (KBr) $v_{\text {max }}$ $1745,1710 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.87(1 \mathrm{H}, \mathrm{s}$, $\mathrm{H}-12$), 6.37 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5$), 2.36 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-13$), 2.58 ($1 \mathrm{H}, \mathrm{dd}$, J = 12.8, $3.3 \mathrm{~Hz}, \mathrm{H}-7$), 2.00 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8 \mathrm{a}$), 1.89 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2 \mathrm{a}$), 1.77 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \mathrm{a}, \mathrm{H}-9 \mathrm{a}$), 1.64 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \mathrm{~b}, 1.56$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-15$), 1.39-1.29 (3H, m, H-2b, H-8b, H-10), 1.20 (1H, m, H-1), 1.04 (1H, m, H-9b), 0.91 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.8 \mathrm{~Hz}, \mathrm{Me}-14$); ${ }^{13} \mathrm{C}$ NMR (Table 1); HRESIMS m/z $281.1426[\mathrm{M}-\mathrm{H}]^{-}$(calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{5}$, 281.1389).

Further elution with 10% ether in hexane afforded 8. Compound $\mathbf{8}$ was obtained as a gum (68 mg): $\mathrm{R}_{\mathrm{f}} 0.32$ (hexaneEtOAc, 7:3); $[\alpha]_{D}-102.3^{\circ}$ (c $0.20, \mathrm{CHCl}_{3}$); IR (KBr) $v_{\text {max }} 3424$, cm^{-1}; ${ }^{1} \mathrm{HNMR} \delta 0.92$ (3H, d, J $=5.4 \mathrm{~Hz}, \mathrm{Me}-14$), 1.29-1.16 (4H, m, H-1, H-2, H-9, H-10), 1.54 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8$), 1.55 ($1 \mathrm{H}, \mathrm{s}$, Me-15), 1.61 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3$), 1.72-1.64 (3H, m, H-3', H-8', H-9'), $1.88\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime}\right), 2.61(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=13.0,4.7 \mathrm{~Hz}, \mathrm{H}-7), 5.30$ (1 H, brs, H-13), 5.32 (1H, brs, H-13'), 5.39 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5$), 5.67 ($1 \mathrm{H}, \mathrm{brt}, \mathrm{J}=1.3 \mathrm{~Hz}, \mathrm{H}-12$), $9.19(1 \mathrm{H}, \mathrm{s}, \mathrm{OOH})$; ${ }^{13} \mathrm{C}$ NMR (Table 1); EIMS m/z 282 [M ${ }^{+}$] (6), 249 (6), 235 (9), 221 (13), 218 (10), 194 (16), 176 (17), 165 (33), 151 (37), 149 (19), 131 (13), and 44 (100).

Further elution with 10\% ether in hexane yielded 9 (85 mg , $R_{f} 0.37$, hexane-ether, $1: 1$), which was found to be identical to a previously reported compound. ${ }^{8}$

Preparation of Compound 10. Deoxyhydroperoxide 5 (100 mg) was dissolved by stirring in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$ at room temperature. Polymer-bound triphenylphosphine (200 mg) was added, and the reaction mixture was stirred for 50 min and filtered, and the residue was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Evaporation of the solvent furnished 10 as a colorless solid ($86 \mathrm{mg}, 92 \%, \mathrm{R}_{\mathrm{f}} 0.19$, hexane-EtOAc, 8:2): needles (hexaneEtOAc); mp 184-185 ${ }^{\circ} \mathrm{C} ;[\alpha]_{D}+20.3^{\circ}\left(\mathrm{c} 0.06, \mathrm{CHCl}_{3}\right)$; IR (KBr) $v_{\text {max }} 3340 \mathrm{~cm}^{-1}(\mathrm{OH})$; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right), \delta 5.63(1 \mathrm{H}$, s , J $=9.0 \mathrm{~Hz}, \mathrm{H}-12), 5.45(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5), 5.38(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-13 \mathrm{a})$, 5.07 (1H, s, H-13b), 3.18 (1H , brs, exchangeable, OH-12), 2.62 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.6,5.1 \mathrm{~Hz}, \mathrm{H}-7$), 1.87 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2 \mathrm{a}$), $1.75-1.65$ (3H, m, H-3a, H-8a, H-9a), 1.60 (1H, m, H-8b), 1.53 (1H, m, H-3b), 1.49 (3H, s, Me-15), 1.28-1.11 (4H, m, H-1, H-2b, H-9b, $\mathrm{H}-10), 0.91$ (3H, d, J $=5.3 \mathrm{~Hz}, \mathrm{Me}-14$); ${ }^{13} \mathrm{C}$ NMR (Table 1); HRESIMS m/z $265.1482[\mathrm{M}-\mathrm{H}]^{-}$(calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{4}$, 265.1445).

Dimerization of 10. Deoxydihydroartemisitene $\mathbf{1 0}$ (250 mg) was dissolved in dry ether ($125 \mathrm{~mL}, 0^{\circ} \mathrm{C}$), and $\mathrm{BF}_{3}-\mathrm{OEt}_{2}$ $(0.25 \mathrm{~mL})$ was added whilethe solution was stirred. Additional $\mathrm{BF}_{3}-\mathrm{OEt}_{2}$ (0.25 mL each) was added after 35 and 60 min . The temperature was raised to $10{ }^{\circ} \mathrm{C}(30 \mathrm{~min})$, then to room temperature, where it was stirred for 12 h before quenching by addition of 5 mL of 2% aqueous solution of NaHCO_{3}. The mixture was diluted with 250 mL of ether and washed with water, and the ether phase was separated and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of ether afforded a yellowish oil, which, upon crystallization, yielded $\mathbf{1 1}$ ($200 \mathrm{mg}, 41.5 \%, \mathrm{R}_{\mathrm{f}}$ 0.52 , hexane-EtOAc, 8:2): col orless prisms (hexane-EtOAcMeOH); mp 295-296 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}+17.0^{\circ}\left(\mathrm{c} 0.11, \mathrm{CHCl}_{3}\right)$; IR (KBr) no OH absorption band; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 5.73$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-12$), 5.48 (1 H, brs, H-5), 5.41 (1 H, brs, H-13a), 5.09 (1H, brs, H-13b), 2.62 (1 H , dd, J = 12.8, $5.2 \mathrm{~Hz}, \mathrm{H}-7$), 1.801.57 ($6 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \mathrm{a}, \mathrm{H}-3 \mathrm{~b}, \mathrm{H}-8 \mathrm{a}, \mathrm{H}-8 \mathrm{~b}, \mathrm{H}-9 \mathrm{a}$, and $\mathrm{H}-2 \mathrm{a}$), 1.53 (3H, s, Me-15), 1.28-1.13 (4H, m, H-1, H-2b, H-9b, and H-10), 0.90 (3H, d, J $=5.1 \mathrm{~Hz}, \mathrm{Me}-14$); ${ }^{13} \mathrm{C}$ NMR (Table 1); HRESIMS $\mathrm{m} / \mathrm{z} 537.2815[\mathrm{M}+\mathrm{Na}]^{+}$(cal cd for $\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{O}_{7} \mathrm{Na}, 537.2817$).

The mother liquor from the crystallization of compound $\mathbf{1 1}$ was concentrated under reduced pressure to leave a gummy residue (96 mg). The residue was flash-chromatographed on a Si gel 60 column (10 g) using 10% EtOAc in hexane to afford 12 (20 mg, $\mathrm{R}_{\mathrm{f}} 0.52$, hexanes-EtOAc, 8:2): amorphous solid; $[\alpha]_{\mathrm{D}}+16.0^{\circ}$ ($\mathrm{c} 0.086, \mathrm{CHCl}_{3}$); IR (KBr) no OH absorption band; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 5.48$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-12$), 5.30 ($1 \mathrm{H}, \mathrm{s}$, H-13a), 5.28 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5$), 5.05 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-13 \mathrm{~b}$), 3.52 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$ 12), 2.59 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.7,5.2 \mathrm{~Hz}, \mathrm{H}-7$), 1.87 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-2 \mathrm{a}$), 1.75-1.50 (5H, m, H-3a, H-3b, H-8a, H-8b, and H-9a), 1.50 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}-15$), 1.27-1.22 (4H, m, H-1, H-2b, H-9b, and H-10), 0.91 (3H, d, J $=5.7 \mathrm{~Hz}, \mathrm{Me}-14$); ${ }^{13} \mathrm{C}$ NMR (Table 1); HRESIMS $\mathrm{m} / \mathrm{z} 303.1581[\mathrm{M}+\mathrm{Na}]^{+}$(cal cd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{Na}, 303.1566$).
Further elution with 10\% EtOAc in hexane afforded dimer 13 (20 mg , col orless solid, $\mathrm{R}_{\mathrm{f}} 0.36$, hexanes-EtOAc, 8:2): $[\alpha]_{\mathrm{D}}$ $+8.3^{\circ}$ (c $0.024, \mathrm{CHCl}_{3}$); IR (film) $v_{\text {max }} 2938,2872,1673,1455$, $1386,1266,1006 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 6.39$ (1H, s, H-12), 5.51 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5$), 5.45 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5^{\prime}$), 5.41 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}-12^{\prime}$), 5.27 (1H , brs, H-13'a), 5.00 (1 H, brs, H-13'b), 4.25 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $12.2 \mathrm{~Hz}), 4.20(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.2 \mathrm{~Hz})\left(\mathrm{CH}_{2}-13\right), 2.59(1 \mathrm{H}, \mathrm{dd}$, $\left.\mathrm{J}=12.7,4.2 \mathrm{~Hz}, \mathrm{H}^{\prime} 7^{\prime}\right), 2.21(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.5,4.2 \mathrm{~Hz}, \mathrm{H}-7)$, 1.92-1.81 (4H, m, H-2a, H-2b, H-2'a, H-2'b), 1.72-1.53 (10 H, H-8a, H-8b, H-9a, H-9b, H-9'a, H-9'b, H-3a, H-3b, H-3'a, H-3'b), 1.47 (3H, s, Me-15'), 1.44 (3H, s, Me-15), 1.24 (4 H , m, H-8'a, H-8'b, H-1, H-1'), 1.11 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-10, \mathrm{H}-10^{\prime}$), 0.90 (6 H , $\left.\mathrm{J}=4.9 \mathrm{~Hz}, \mathrm{Me} 14, \mathrm{Me}-14^{\prime}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ 146.1 ($\mathrm{s}, \mathrm{C}-11^{\prime}$), 140.6 ($\mathrm{d}, \mathrm{C}-12$), 112.6 ($\left.\mathrm{s}, \mathrm{C}-13^{\prime}\right), 112.4$ (t, C-11), 108.4 (s, C-4), 107.5 (s, C-4'), 97.4 (d, C-5'), 96.4 (d, C-5), 91.6 (d, C-12'), 84.2 ($\mathrm{s}, \mathrm{C}-\mathrm{6}^{\prime}$), 68.5 (t, C-13), 45.7 (d, C-1), 44.8 (d, C-7ㄱ) ${ }^{\text {a }} 44.7$ (d, C-1 $)^{\text {a }}, 39.3$ (d, C-7), 35.5 (d, C-10) ${ }^{\text {b }} 35.4$ (d, $\left.\mathrm{C}-10^{\prime}\right)^{\mathrm{b}}, 34.8$ (t, C-3), 34.4 (t, C-3'), 34.3 (t, C-9, C-9'), 33.6 (t , C-8'), 29.4 (t, C-8), 24.4 ($\left.q, C-15^{\prime}\right), 23.9$ ($q, C-15$), 22.0 (t, C-2), 22.4 (t, C-2'), 19.0 (q, C-14), 18.8 (q, C-14') (a and b, assignments may be reversed); HRESIMS m/z 537.2822 [M + Na] ${ }^{+}$ (calcd for $\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{O}_{7} \mathrm{Na}, 537.2810$).

Dehydroacetoxylation of 5. The hydroperoxide 5 (50 mg) was dissolved in $\mathrm{Ac}_{2} \mathrm{O}(0.5 \mathrm{~mL})$ containing 0.1 mL of pyridine. The solution was stirred at room temperature for 50 min and
then was worked up by addition of $\mathrm{CHCl}_{3}(50 \mathrm{~mL})$, washing with 2% aqueous NaHCO_{3} solution (2 mL), followed by $2 \% \mathrm{HCl}$ (2 mL), and finally with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The CHCl_{3} extract was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of the solvent yielded 14 ($41.0 \mathrm{mg}, 87 \%, \mathrm{R}_{\mathrm{f}} 0.60$, tol uene-EtOAc, $8: 2$): prisms ($\mathrm{CH}_{2}-$ Cl_{2}-EtOAc); mp $188-189^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}-86.3^{\circ}$ (c $0.04, \mathrm{CHCl}_{3}$); IR $(\mathrm{KBr}) v_{\max } 1740 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 6.41(1 \mathrm{H}$, $\mathrm{d}, \mathrm{J}=1.2 \mathrm{~Hz}, \mathrm{H}-13 \mathrm{a}), 5.78(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5), 5.63(1 \mathrm{H}, \mathrm{brs}, \mathrm{H}-13 \mathrm{~b})$, $2.79(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=13.3,4.6 \mathrm{~Hz}, \mathrm{H}-7) 1.81-1.72(4 \mathrm{H}, \mathrm{m}, \mathrm{H}-2 \mathrm{a}$, H-3a, H-8a, H-9a), 1.56 ($2 \mathrm{H}, \mathrm{m}, \mathrm{H}-3 \mathrm{~b}$ and H-8b), 1.48 ($3 \mathrm{H}, \mathrm{s}$, $\mathrm{Me}-15$), $1.33-1.22$ ($4 \mathrm{H}, \mathrm{m}, \mathrm{H}-1, \mathrm{H}-2 \mathrm{~b}, \mathrm{H}-9 \mathrm{~b}$, and $\mathrm{H}-10$), 0.95 (3H, d, J $=5.8 \mathrm{~Hz}, \mathrm{Me}-14$); ${ }^{13} \mathrm{C}$ NMR (Table 1); HRESIMS m/z $263.1260[\mathrm{M}-\mathrm{H}]^{-}$(calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4}, 263.1288$).

Conversion of $\mathbf{1 0}$ to 12. To a stirred solution of $\mathbf{1 0}(5 \mathrm{mg})$ in dry ether (2 mL) was added $\mathrm{MeOH}(0.15 \mathrm{~mL})$, followed by $\mathrm{BF}_{3}-\mathrm{OEt}_{2}(9.0 \mu \mathrm{~L})$. Stirring was continued for 30 min , then the reaction was quenched and worked up as before to give 12 ($3.0 \mathrm{mg}, 57 \%$).

Conversion of $\mathbf{7}$ to 9 . Compound $\mathbf{7 (3 3 ~ m g) ~ w a s ~ d i s s o l v e d ~}$ in absolute ethanol (8 mL) and stirred at $0^{\circ} \mathrm{C}$ until a clear sol ution was obtained, and $\mathrm{NaBH}_{4}(16.3 \mathrm{mg})$ was then added. Stirring was continued for 1.5 h , then the reaction was quenched by the addition of acetic acid (0.1 mL) and worked up as usual to produce an oily residue. This residue was subjected to col umn chromatography on Si gel using hexaneEtOAc ($8: 2$) as eluent to afford $9(20 \mathrm{mg}, 76 \%$) as a colorless solid, with physical and spectral data indistinguishable from isolated 9.

Conversion of $\mathbf{1 5}$ to 7 . Compound $\mathbf{1 5}(38 \mathrm{mg})$ was dissolved in $\mathrm{MeOH}(15 \mathrm{~mL})$, and Pd on $\mathrm{CaCO}_{3}(10 \mathrm{mg})$ was added. The mixture was subjected to hydrogenation under atmospheric pressure for 7 h at room temperature. The reaction mixture was then worked up as usual to produce 7 ($32.0 \mathrm{mg}, 90 \%$), with physical and spectral data indistinguishable from isolated 7.

X-ray Crystal Structure Analysis of Compound 11. ${ }^{17}$ Crystal data: $\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{O}_{7} ; \mathrm{MW}=514.67$, monoclinic, space group $P 2_{1}\left(C_{2} 2\right), a=20.063(3) ~ \AA, b=13.307(2) \AA, c=10.571(2) \AA$, $\beta=103.17(1)^{\circ}, \mathrm{V}=2748(1) \AA^{3}, \mathrm{Z}=4, \mathrm{D}_{\mathrm{c}}=1.244 \mathrm{~g} \mathrm{~cm}^{-3}, \mu(\mathrm{Cu}$ K α radiation, $\lambda=1.5418 \AA$) $=6.7 \mathrm{~cm}^{-1}$; crystal dimensions $0.30 \times 0.30 \times 0.56 \mathrm{~mm}$.

An Enraf-Nonius CAD-4 diffractometer (Cu K α radiation, graphite monochromator) was used for all X-ray measurements. The space group was determined from the Laue symmetry, systematic absences (0 kO when $\mathrm{k} \neq 2 \mathrm{n}$), and the fact that $\mathbf{1 1}$ is chiral.

Refined unit-cell parameters were calculated from the diffractometer setting angles for 25 reflections ($37^{\circ}<\theta<40^{\circ}$) widely separated in reciprocal space. Intensity data ($+\mathrm{h},+\mathrm{k}$, $\pm \mathrm{I}, \theta_{\max }=75^{\circ}, 5919$ nonequivalent reflections), recorded at 298 K by $\omega-2 \theta$ scans [scanwidths $(0.80+0.14 \tan \theta)^{\circ}$], were corrected for the usual Lorentz and polarization effects; an empirical absorption correction, based on the ϕ-dependency of the intensities of several reflections with χ ca. 90°, was also applied [$T_{\text {max. }}: T_{\text {min }}$. relative) $=1.00: 0.92$]. Four reference reflections, remeasured at 2 h intervals throughout the data collection, showed no significant variation ($<1 \%$).

The crystal structure was solved by direct methods. The enantiomer was chosen to yield the configuration consistent with precursor 4. Atomic positional and thermal parameters of the carbon and oxygen atoms (first isotropic and then anisotropic) were adjusted by means of several rounds of fullmatrix least-squares calculations during which $\sum \mathrm{w} \Delta^{2}[\mathrm{w}=$ $\left.1 / \sigma^{2}\left(\left|\mathrm{~F}_{\mathrm{o}}\right|\right), \Delta=\left(\left|\mathrm{F}_{\mathrm{o}}\right|-\left|\mathrm{F}_{\mathrm{c}}\right|\right)\right]$ was minimized; hydrogen atoms were incorporated at their calculated positions during the later cycles. An extinction correction (g) was included as a variable
during the final iterations (total number of parameters $=667$), which converged (max. shift:esd $=0.03$) at $R=0.039, R_{w}=$ 0.056 , GOF $=1.48, \mathrm{~g}=1.8(1) \times 10^{-6}\left\{\mathrm{R}=\sum| | \mathrm{F}_{\mathrm{o}}\left|-\left|\mathrm{F}_{\mathrm{d}}\right| / / \sum\right| \mathrm{F}_{\mathrm{o}} \mid\right.$, $\mathrm{R}_{\mathrm{w}}=\left[\sum \mathrm{w}\left(\left|\mathrm{F}_{\mathrm{o}}\right|-\mid \mathrm{F}_{\mathrm{c}}\right)^{2} / \Sigma \mathrm{w}\left|\mathrm{F}_{\mathrm{o}}\right|^{2}\right]^{1 / 2}, \mathrm{GOF}=\left[\Sigma \mathrm{w} \Delta^{2} /\left(\mathrm{N}_{\text {observns }}-\right.\right.$ $\left.\left.\left.\mathrm{N}_{\text {param }}\right)\right]^{1 / 2}\right\}$ over 5149 reflections with $\mathrm{I}>2.0 \sigma(\mathrm{I})$. No unusual features were present in a final difference Fourier synthesis $\left[\Delta \rho\left(e / A^{3}\right)=0.19(\max),-0.18(\min)\right]$.
Crystallographic cal culations were performed by use of the Enraf-Nonius Structure Determination Package (SDP 3.0). ${ }^{18}$ For all structure-factor calculations, neutral atom scattering factors and their anomalous dispersion corrections weretaken from the literature. ${ }^{19}$

Tables of crystallographic data have been deposited with the Cambridge Crystallographic Data Centre. Copies of these data can be obtained, free of charge, on application to the Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: $+44(0)-1223-336033$ or e-mail: deposit@ccdc.cam.ac.uk).

Acknowledgment. The authors thank the United States Department of Agriculture, Agriculture Research Service, Specific Cooperative Agreement No. 58-6408-7-012, for partial support of this work. The authors are also grateful to Dr. Daneel Ferreira for a critical review of the manuscript, Mr. Frank T. Wiggers and Dr. Chuck Dunbar, respectively, for the NMR and the HRESIMS data, and the Developmental and Therapeutics Program, National Cancer Institute, Bethesda, MD, for the cytotoxic evaluation of the test compounds.

References and Notes

(1) Woerdenbag, H. J .; Moskal, T. A.; Pras, N.; Malingré, T. M.; El-Feraly, F. S.; Kampinga, H. H.; K onings, A. W. T. J . Nat. Prod. 1993, 56, 849-856.
(2) Beekman, A. C.; Barensten, A. R. W.; Woerdenbag, H. J ; VanUden, W.; Pras, N.; Konings, A. W. T.; El-Feraly, F. S.; Galal, A. M.; Wikstrom, H. V. J . Nat. Prod. 1997, 60, 325-330.
(3) Beekman, A. C.; Wierenga, P. K.; Woerdenbag, H. J .; VanUden, W.; Pras, N.; Konings, A. W. T.; El-Feraly, F. S.; Galal, A. M.; Wikstrom, H. V. Planta Med. 1998, 64, 615-619.
(4) Brossi, A.; Venugopalan, B.; Gerpe, L. D.; Yeh, H. J. C.; FlippenAnderson, J. L.; Buchs, P.; Luo, X. D.; Milhous, W.; Peters, W. J. Med. Chem. 1988, 31, 645-650.
(5) Galal, A. M.; Ahmed, M. S.; El-Feraly, F. S.; McPhail, A. T. J . Nat. Prod. 1996, 59, 917-920.
(6) Wasserman, H. H.; Lu, T.; Scott, A. I. J . Am. Chem. Soc. 1986, 108, 4237-4238.
(7) EI-Feraly, F. S.; Ayalp, A.; AI-Yahya, M. A.; McPhail, D. R.; McPhail, A. T. J. Nat. Prod. 1990, 53, 66-71.
(8) Khalifa, S. I.; Baker, J. K.; Rogers, R. D.; EI-Feraly, F. S.; Hufford, C. D. Pharm. Res. 1994, 11, 990-994.
(9) EI-Feraly, F. S.; Ayalp, A.; AI-Yahya, M. A.; McPhail, D. R.; McPhail, A. T. J. Nat. Prod. 1990, 53, 920-925.
(10) Flippen-Anderson, J. L.; George, C.; Gilardi, R.; Yu, Q. S.; Dominguez, L.; Brossi, A. Acta Crystallogr. 1989, C45, 292-294.
(11) Allen, F.H.; Kennard, O.; Watson, D. G.; Brammer, L.; Orpen, A. G.; Taylor, R. J.' Chem. Soc., Perkin Trans. 2 1987, S1-S'19.
(12) Acton, N.; Klayman, D. L. Planta Med. 1985, 5, 441-442.
(13) Boyd, M. R.; Paull, K. D. Drug Dev. Res. 1995, 34, 91-109.
(14) Beekman, A. C.; Woerdenbag, H. J.; Kampinga, H. H.; Konings, A. W. T. Phytother. Res. 1996, 10, 140-144.
(15) El-Feraly, F. S.; Hufford, C. D. J. Org. Chem. 1982, 47, 1527-1530.
(16) EISohly, H. N.; Croom, E. M., J r.; El-Feraly, F. S.; EI-Sherei, M. M. J. Nat. Prod. 1990, 53, 1560-1564.
(17) Crystallographic Data for 11 have been deposited at the Cambridge Crystallographic Data Centre. Copies of the data can be obtained, free of charge, on application to the Director, CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK (Fax: +44-(0)1223-336033 or E-mail: deposit@ccdc.cam.ac.uk).
(18) Frenz, B. A. and Associates, Inc. SDP 3.0: Structure Determination Package, College Station, TX, and Enraf-Nonius, Delft, The Netherlands, 1985.
(19) Ibers, J. A., Hamilton, W. C., Eds. International Tables for X-Ray Crystallography; Kynoch: Birmingham, UK, 1974; Vol. IV.
NP0104065

[^0]: * To whom correspondence should be addressed. Tel: (662) 915-5928 Fax: (662) 915-5928. E-mail: amgalalv@yahoo.com.
 ${ }^{\dagger}$ National Center for Natural Products Research, University of Mississippi.
 ${ }^{\ddagger}$ Department of Pharmacognosy, University of Mississippi.
 ${ }^{\S}$ Department of Pharmaceutics, University of Mississippi.
 ${ }^{\perp}$ King Saud University.
 ${ }^{\nabla}$ Duke University.

[^1]: ${ }^{\text {a }} \mathrm{In} \mathrm{CDCl}_{3}$ at 75 MHz . Carbon multiplicities were determined by DEPT 135 experiments. ${ }^{\mathrm{b}}$ These same values are assigned also to the corresponding carbons ($1^{\prime}-15^{\prime}$) of the other half of dimer 11.

